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Discontinuous shear thickening (DST) is associated with a sharp rise of a suspension’s viscosity
with increasing applied shear rate. A key signature of DST, highlighted in recent studies, is the very
large fluctuations of the measured stress as the suspension thickens. A clear link between microstruc-
tural development and the dramatic increase of the stress fluctuations has not been established yet.
To identify the microstructural underpinnings of this behavior, we perform simulations of sheared
dense suspensions. By analyzing particle contact networks, we identify a subset of constrained
particles that contribute directly to the rapid rise in viscosity and the large stress fluctuations.
Indeed, both phenomena can be explained by the growth and percolation of constrained particle
networks—in direct analogy to rigidity percolation. A finite size scaling analysis confirms this is a
percolation phenomenon and allows us to estimate the critical exponents. Our findings reveal the
specific microstructural transition that underlies DST.

Suspensions play an important role in a wide variety
of environmental and technological processes. Examples
include colloidal systems, pharmaceuticals, slurries, and
concrete. Their flows raise a number of fundamental
physics questions, exhibiting a multitude of phenomena
that include shear thinning and thickening, thixotropy,
giant stress fluctuations and jamming [1, 2]. While sev-
eral problems remain outstanding, intense interest has fo-
cused on the physical mechanisms at the origin of the dis-
continuous shear thickening (DST), which is quite ubiq-
uitous and dramatic: the suspension experiences a rapid
rise in stress or viscosity as the imposed shear rate in-
creases. The flow of DST suspensions rapidly becomes
strongly dilatant [3–5] and erratic, with giant stress fluc-
tuations, rapid increase of stress, and structural inhomo-
geneities in response to the increasing shear rate [6–9].

Recent studies on DST have gained new insights into
the role of frictional solid-on-solid contacts between the
particles in a suspension, and how their sharp increase in
number largely controls the emergence of DST [10–13].
Indeed, over the last few years, experiments and numer-
ical simulations have extensively analyzed and demon-
strated, how, at the onset of DST, the bulk rheological
behavior of suspensions becomes dramatically sensitive
to the surface interactions, roughness, and hence fric-
tional contact between particles, in spite of the presence
of solvent lubrication forces [5, 14–20]. This fundamental
understanding of such phenomena has opened new paths
to design the flow of dense suspensions through nanoscale
physics and surface chemistry. However, in spite of the
sensitivity to particle surface contacts which are strongly
material and chemistry dependent, the overall DST phe-
nomenology is consistent across the whole spectrum of
suspensions involved, suggesting the presence of common
microstructural features which remain elusive.

The theoretical mean-field approach of Wyart and
Cates [12], in which the microstructure is characterized

by the suspension volume fraction and the overall frac-
tion of frictional contacts produced under shear, demon-
strated that the sudden rise in the stress (or decrease in
shear rate for the case of stress driven shear) has gen-
eral features that do not depend on the specifics of the
material and surface chemistry. Further, the large fluc-
tuations of the shear stresses and the scaling properties
of the shear response, which are reminiscent of critical
phenomena, seem ubiquitous in DST over a wide range
of suspensions [7–9, 21, 22].

These findings suggest that, as frictional contacts be-
tween the particles become prevalent with increasing
rate, larger scale microstructures, involving many par-
ticles and built under shear, may emerge independently
from the detailed material chemistry and control the
DST phenomenon [23]. Previous studies have focused on
order-disorder transitions in the microstructure of par-
ticle suspensions approaching shear thickening [24–26],
and there is now growing consensus, from experiments
and simulations, that large clusters or chains of parti-
cles spanning the system may cause the abrupt increase
of stress or possibly jamming [10, 12, 27–30]. Clearly,
the fact that there is microstructural reorganization that
eventually spans the system is suggestive of a percolation
transition [31, 32]. The occurrence of a percolation tran-
sition could provide a connection to critical phenomena
[31], and could provide a conceptual framework for un-
derstanding aspects of both the microstructural develop-
ment and its link to DST. However, testing these ideas is
extremely challenging, since microstructures, and in par-
ticular stress-bearing ones, are hardly accessible in ex-
periments on dense suspensions subjected to high shear
stresses or rates. Computer simulations of particle based
models may instead be specifically designed to investi-
gate those microstructures, and are therefore the most
promising tool to shed light onto these questions. Never-
theless, due to their complexity, most simulations studies
have been so far limited to relatively small system sizes,



2

FIG. 1: (a) The average relative viscosity (ηr) as a function of shear rate (γ̇) for a suspension at ϕ = 56 % and different system
sizes. The error bars represent one standard deviation from the mean that was calculated, after a dynamical equilibrium was
reached, from a running average over 25 strain units. The jump in the viscosity does not vary with increasing the system nor
the Reynolds number (albeit reducing the Reynolds number produces a plateau at very high rates). The vertical dashed lines
indicate the shear rates used in (b), where we show the instantaneous viscosity (stress/shear rate) as a function of applied
strain γ. The jump in ηr is accompanied by large fluctuations of the stress near the critical shear rate.

whereas much larger system sizes would be needed to
detect critical-like behaviors, and identify their origin.

Here we use large scale 3D simulations of model dense
suspensions to show that a percolation transition is in-
deed at the origin of the stress fluctuations characteristic
of DST, once one properly defines the basic unit of mi-
crostructure that forms the percolating structure. The
percolation of this microstructure can be directly linked
to the DST, and to the accompanying large stress fluc-
tuations, and points to the role of rigidity percolation in
this phenomenon. Further, the critical behavior is stud-
ied by applying a finite size scaling analysis, which allows
us to estimate the related critical exponents.

We have utilized computer simulations to study a
model suspension of spheres that interact via hydro-
dynamic lubrication, contact repulsion, and frictional
forces, following recent work on simulations of shear
thickening suspensions [26, 33, 34]. All spheres have the
same size, while all interaction parameters, provided in
the supplementary information (SI), have been adjusted
to match the model in [34] where lubrication forces are
regularized at short distances between the particles sur-
faces and Coulomb friction act tangentially on surface
contacts. We follow the same numerical approach de-
scribed in [26] to integrate the equations of motion for
all particles, which allows us to perform simulations of
large systems with LAMMPS [35] with overdamped par-
ticle motions. The system is sheared using Lees-Edwards
boundary conditions, and a background velocity field
with constant shear rate is imposed that particle motion
can relax to. The system is also subject to thermal fluc-
tuations. All quantities are reported in reduced units as a
combination of three basic units: energy scale ε = kBT ,
particle mass m, and particle diameter d. From these

parameters, the unit of time is τ0 =
√
md2/ε. Here we

present data on volume fraction ϕ = 56%, and we re-
produce, as in [34], the features of the DST. The data
reported in the following refer to simulation boxes with
edge length, L= 11.64 d, 23.28 d and 34.92 d, containing
1688, 13500 and 45563 spheres respectively. The medium
and larger sizes correspond to much larger system sizes
than previous studies, which is essential to address the
critical-like behavior of stress fluctuations and to deal
with finite-size effects. We use the convention that x
corresponds to the flow direction, y corresponds to the
vorticity direction, and z to the shear gradient direction.
The model suspensions were sheared up to 40 strain units
to reach a steady flow state. We use the shear compo-
nent σxz of the stress tensor, obtained from interparticle
forces, relative positions, and particle velocities [36], to
extract the relative viscosity ηr which is plotted in Figure
1a as a function of the shear rate γ̇ for the three system
sizes studied. The data show a steep increase of viscos-
ity at a threshold shear rate γ̇ ≃ 5 τ0

−1, and increasing
the system size does not significantly alter the viscosity
increase, indicating that the DST phenomenon identified
here is not an artifact of limited sample sizes used in
simulations. The time series from which the viscosity is
extracted in steady state are plotted in Figure 1b, which
shows (for the intermediate system size of 13500 parti-
cles) σxz/γ̇ as a function of the strain γ for several shear
rates. The data clearly demonstrate the presence of large
fluctuations of the shear stress in systems that have gone
through DST.

As described earlier, the number of frictional contacts
per particle is strongly correlated to the suspension stress
close to shear thickening. Recent work [32] has shown
that the shear stress increases with the mean frictional
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FIG. 2: Rk(γ) (equal to 1 if there exists at a percolating clus-
ter of k-neighbor particles and 0 otherwise) plotted for differ-
ent k values alongside the stress σxz/ < σxz > (dashed black
line). The percolation of 4-neighbor particles corresponds to
the giant stress fluctuations.

contact number, peaking at 3 and 4 for large shear rates.
However, in terms of the mean frictional contact number,
a distinction could not be made between continuous shear
thickening (CST) and DST, which clearly have different
rheological signatures. These findings point, in our view,
to the fact that the local microstructural environment
and its larger scale connectivity determines the nature
of the stress transmission through the particle suspen-
sion. As a consequence, to search for the microscopic
origin of the stress fluctuations, we consider the hierar-
chy of structures built up by particles that share frictional
contacts with a minimum k neighbors. In graph theory
this defines a contact graph (also called a network) com-
posed of nodes with degree k at minimum [37, 38]. To be
more precise, we define a neighbor, for each particle, as
a particle close enough in proximity that it can interact
with said particle by frictional forces. In our frictional
model, this occurs when the sphere surfaces are in con-
tact. The frictional force is proportional to the normal
force between the neighboring spheres and acts to re-
sist transverse motion relative to surface normal between
neighboring spheres (see SI). We will refer to particles
with at least k neighbors as k-neighbor particles.

Testing k values from 2 to 6, we determine whether
the percolation of k-neighbor particles can be directly
connected to the rapid rise in viscosity and the large
stress fluctuations corresponding to the DST in our sim-
ulations. For each k, we identify the k-neighbor particles,
sort them into clusters, obtain the cluster size distribu-
tion, and identify configurations in which at least one
percolating cluster is present in all directions. The plot
in Figure 2 superimposes the time series for the presence
of a percolating cluster of k-neighbor particles (Rk = 1)
or not (Rk = 0), for different k, to the time series of the

FIG. 3: Main frame: The probability R of 4-neighbor parti-
cles to form a percolating cluster as a function of the scaling
variable (γ̇− γ̇c)L

1/ν for three system sizes. The data collapse
onto a unique curve for γ̇c = 5.2τ−1

0 and ν ≈ 0.6. Inset: The
probability R of 4-neighbor particles to form a percolating
cluster as a funtion of the shear rate for the different system
sizes.

shear stress close to DST. The data show that clusters
of 3-neighbor particles always percolate, independently
from the stress fluctuations, which also happens for k=2
(data not shown). In contrast, the percolation of a 4-
neighbor cluster exactly corresponds to the spikes in the
shear stress of the suspension. Note, the 4-neighbor par-
ticles locally satisfies the Maxwell criterion for rigidity
in presence of tangential frictional forces [39]. We also
find that at low enough γ̇, where DST does not occur
and stress fluctuations are much smaller, the percolation
of 4-neighbor particles were not observed. At higher k
values, percolation is significantly reduced [32]. Indeed,
the data in Figure 2 show that percolation of 6-neighbor
particles, which, incidentally, correspond to locally rigid
structures for frictionless spheres, is not evident.
These findings strongly suggest that the percolation of

locally rigid structures, reminiscent of shear jamming in
granular fluids [40, 41], may be at the origin of the large
stress fluctuations typical of DST, playing a significant
role in this phenomenon. Indeed, the percolation of the
rigid 4-neighbor particles can support the transmission
of stress and bear most of the load also over an extended
period of time, in contrast to k-neighbor particles with
k lower values, which can more easily be disrupted. The
percolation of the rigid 4-neighbor particles may there-
fore be central to the self-organization of the microstruc-
ture of the suspensions under flow, when DST occurs.
It is intriguing, at this point, to ask whether the growth

of 4-neighbor particles can be studied in terms of perco-
lation theory. That is, can we define a critical shear rate
and critical exponents that describe a diverging length
scale and mean cluster size? The determination of such
quantities can be challenging even for static systems.
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FIG. 4: Left: PLβ/ν , with P the probability of a random 4-neighbor particle to belong to the percolating cluster, as a function
of the scaling variable (γ̇ − γ̇c)L

1/ν and for different system sizes. Center: SL−γ/ν , with S the second moment of the cluster

size distribution (or mean cluster size), as a function of (γ̇− γ̇c)L
1/ν . Right: SmaxL

−1/νσ, with Smax the maximum cluster size,

as a function of (γ̇ − γ̇c)L
1/ν and for different system sizes. Using γ̇c = 5.1τ−1

0 obtained from the percolation probability (see
Fig.3), all data collapse onto unique scaling curves for β ≈ 0.18, σ ≈ 0.75, and γ ≈ 1.3. Insets: Unscaled P (left), S (center),
and Smax (right) plotted against γ̇ for the different system sizes.

Here we use a finite size scaling ansatz typical of crit-
ical phenomena and percolation [31] to first determine
the critical shear rate. We examine the probability of
percolation, R, defined as the average occurrence of per-
colating clusters of 4-neighbor particles over each time
series at different shear rates and for the 3 different sizes
of the simulation box. The data for R as a function of
shear rate (Figure 3 inset) show that the larger the sys-
tem size the steeper the transition from 0 to 1 in proba-
bility, akin to the behavior of the percolation probability
close to a percolation transition, and that the curves for
each system size intersect at around a shear rate of about
5. Hence we hypothesize that the percolation threshold
of the 4-neighbor particles indeed corresponds to a spe-
cific shear rate. By defining the approximate intersection
of the different curves as the critical shear rate corre-
sponding to the percolation threshold, we can collapse
all data in terms of a scaling variable (γ̇ − γ̇c)L

1/ν . γc
points to a characteristic time scale over which a stable
percolating network may be built or destroyed at a given
shear rate (Figure 3). In general, we would expect that,
quantitatively, this characteristic timescale depends on
the microscopic physics of the system, and hence on the
specific experimental system considered or on the micro-
scopic parameters of the simulations (see SI).

The data collapse supports the validity of the finite
size scaling ansatz and provides a first estimate for the
critical exponent ν, ν ≈ 0.6, which describes the diver-
gence of the correlation length close to the percolation
threshold. We can then compute, from the same clus-
ter analysis of 4-neighbor particles and having obtained
the whole cluster size distribution, the probability of a
k-neighbor random particle being in the percolating clus-
ter, the mean cluster size (i.e. the second moment of the
cluster size distribution), and the maximum cluster size
[31]. All these quantities follow the data collapse which
stems from the finite size scaling ansatz (Figure 4), and
the collapsed data allow us to independently determine

three different critical exponents: β ≈ 0.18, σ ≈ 0.75,
and γ ≈ 1.3. The exact determination of the critical ex-
ponents will require further studies, however, the data
already show a significant discrepancy from the mean
field values and from the random connectivity percola-
tion transition in 3D, suggesting that the percolation of
the 4-neighbor particles during DST may correspond to
a distinct universality class. Rigidity percolation studies,
while quite limited (especially in 3D), have indeed sug-
gested a distinct universality class, and frictional rigid-
ity percolation studies have found similar discrepancies
[39, 42].

In conclusion, we have identified the basic microstruc-
tural unit whose percolation corresponds to the onset
of DST in shear thickening suspensions, thanks to large
scale 3D simulations of model suspensions. Remarkably,
these microstructural units can build a locally rigid net-
work of frictional contacts and their cluster statistics fol-
low the finite size scaling ansatz typical of critical phe-
nomena and percolation theory. The percolation of these
locally rigid structures is central in the stress transmis-
sion throughout the suspension and appears be at the
origin of the giant fluctuations and the critical-like be-
haviors observed for DST. The snapshots in Figure 5 in-
deed show how the rigid structures identified through the
4-neighbor particles change drastically with the global
stress measured in the system, providing a visualization
of the microstructural origin of the giant stress fluctua-
tions.

As our findings support the idea that a very specific
self-organization of the suspension microstructure has to
take place during DST, they call on experimental ap-
proaches that can recognize the locally rigid structures.
For example, efforts in the past to study the conductiv-
ity of a suspension of particles, where the matrix fluid
is conducting and the spherical particles are insulating,
can distinguish between ordered and disordered states
[43]. However, this is not sufficient to distinguish be-
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FIG. 5: A snapshot showing the connections between 4-
neighbor particles at γ̇ = 5 τ0

−1. The connections are col-
ored by the magnitude of the local shear stress, |σxz|. In
this snapshot, σxz ≈ 4000 kBT/d

3, which is accompanied by
the presence a large number of 4-neighbor particles and their
percolation. Here we show only the percolating cluster, corre-
sponding to roughly half of the 4-neighbor particles present,
which forms a densely connected network that spans the sys-
tem in all directions. See Supplementary Material for a snap-
shot from the low-stress state.

tween different k-neighbor particles, making it a chal-
lenge to identify the type of structure which is percolat-
ing. Experiments that can image stress fields [9, 44, 45]
will likely pick out stress chains in compression. This is
not necessarily enough to directly identify the 4-neighbor
particle network which appears to be crucial for DST, al-
though the stability of a percolating stress chain may
indicate it follows a connected path of k = 2 neighbor
particles which would be a subset of a network of k = 4
neighbor particles, providing the necessary structure to
support stress chains. Developing capability to identify
the mechanical constraints acting locally on particles in
different part of the suspension contact network may be
central to test the insight gained in this work. As exten-
sive large scale simulations could allow, in the future, to
more precisely determine the universality class from the
percolation exponents, experimental rheological tests and
scaling analysis of experimental flow curves [18, 22, 30]
could complement the microscopic understanding devel-
oped here. Following the hierarchical self-organization of
the k-neighbor particle structures under shear and identi-
fying possible precursors of the rigidity percolation could
also provide novel insight into shear thickening instabili-
ties.
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Lett. 90, 178301 (2003), URL https://link.aps.org/

doi/10.1103/PhysRevLett.90.178301.
[7] M. Hermes, B. M. Guy, W. C. K. Poon, G. Poy, M. E.

Cates, and M. Wyart, Journal of Rheology 60, 905
(2016).

[8] B. Saint-Michel, T. Gibaud, and S. Manneville, Phys.
Rev. X 8, 031006 (2018), URL https://link.aps.org/

doi/10.1103/PhysRevX.8.031006.
[9] V. Rathee, D. L. Blair, and J. S. Urbach, Proceedings

of the National Academy of Sciences 114, 8740 (2017),
https://www.pnas.org/doi/pdf/10.1073/pnas.1703871114,
URL https://www.pnas.org/doi/abs/10.1073/pnas.

1703871114.
[10] R. Seto, R. Mari, J. F. Morris, and M. M. Denn, Physical

Review Letters 111, 1 (2013), ISSN 00319007, 1306.5985.
[11] R. Mari, R. Seto, J. F. Morris, and M. M. Denn, Journal

of Rheology 58, 1693 (2014), ISSN 0148-6055, 1403.6793,
URL http://dx.doi.org/10.1122/1.4890747.

[12] M. Wyart and M. E. Cates, Physical Review Letters 112,
1 (2014), ISSN 10797114, 1311.4099.

[13] N. Y. C. Lin, B. M. Guy, M. Hermes, C. Ness, J. Sun,
W. C. K. Poon, and I. Cohen, Phys. Rev. Lett. 115,
228304 (2015), URL https://link.aps.org/doi/10.

1103/PhysRevLett.115.228304.
[14] D. Lootens, P. Hébraud, E. Lécolier, and H. Van Damme,
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